8.2 Ex.:Roue du velo

- Roue de vélo en rotation au tour de son axe de symetrie: Ll @=wy
- On veut changer la direction de I’axe de rotation; comment faut-il exercer le
couple de force pour que 1’axe tourne autour de Oz ? ou de Ox ?
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8.2 Ex.: Roue du velo

- Roue de veélo en rotation au tour de son axe de symétrie: Lg || @

- On veut changer la direction de I’axe de rotation; comment faut-il exercer le
couple de force pour que I’axe tourne autour de Ox ? ou de Oz ?

a) forces F paralleles a z . b) forces F paralléles a x
Mcql 2
_F dL¢
L¢g y
F

X . : .
- dL - : . dL .
M selon =X = = selon —X : MselonZz = = selon Z

Ltourne dans le plan Xy autour de OZ Ltourne dans le plan yZ autour de OX

Théoréme du dL - S S = S
moment cinétique d—tG =MZ| = (FAF)+ (—FAN—F)=2FA\F
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8.3 Moment cin¢etique d’un solide

N ) ] Rappel: pour chaque point P du solide
Par rapport a un pomt A appartenant au solide: Bp = B, + 13113 + 3 AA—P’ avec 13;3 —0

- s s s
La=)Y APoAmaia =Y APyAmo(Us+&AAP,)
o ) B — — c_i/\gj)/\é))z_)
rG:MZmara —ZmaAPa/\UA+ZmQAPa/\(W/\APa) \f(&g)b—(d b)g
a \Q\/ (87

LA =C4?/\¢M'E'Aj—|- ;ma [(A_Pa*)?(;; _ (A_RZ . 55) A_Pa)}

=0 si A =G (centre de masse)
ousi v, = 0,donc A = C fixe sur axe de rotation

- e 2_> _— S\ =
Lo = ) mg[(GR) & — (GPy - &) GFy]
a

Rappel: Ma v dm (F) — p(rf) d37
st le solide est « continu », 1l faut remplacer

la somme sur les points matériels -
par une intégrale sur le volume du solide

m volume du solide

p(7) = masse volumique



- Moment cinétique par rapport a G (ou n’importe quel

- Faisons une projection sur I’axe de rotation A

8.3 Moment d’inertie par rapport
au CM (ou C sur axe de rotation) rotation o

BzwéA

point C fixe sur I’axe de rotation A) :

= 2, e\ =
Ly = Ema (GB.) @ - (GR, - &) GR,
a

(w = wé, paralléle a axe A):

- ——\2 —_ _
La=Lo-ea= ) my|[(CF,) wés — (GFg - wéy) Gy - ea=

a
3.2 SN 2
a)Zma ((GR)" - (G, -24)"| = a)Zma d2
a a

L, ne dépend de G ou C'!

- Moment d’inertie du solide 9
par rapport a I’axe A: In = Z mady, La =1Ipaw
(87

- Remarques:

- I, dépend seulement de la distribution de masse par rapport a I’axe A
- En général, L; n’est pas paralléle a w
- Si A est un axe de symétrie du solide et @ = wé,, alors L est paralléle a @

Demo: https://auditoires-physique.epfl.ch/experiment/60 4
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8.3 Masse (d’1nertie) et moment d’inertie

/%,

P

U
e ——

2¢me 191 de Newton

\ L, dUg - é,
FA—F eA=MaG ep = dt
dvga
o dt

La MASSE (inertielle ou d’inertie)
mesure la résistance (inertie)
qu'oppose le corps a toute accélération
ou a toute modification de I'état de
MOUVEMENT (RECTILIGNE)

axe de rotation
fixe A par G

Ly=Lg-8, = meadé = [w
a

. dL; . dLg-éy dL,
Ma=Me-ea =g a="g ~a
_Ida)

— A dt

La MOMENT D’INERTIE mesure
la résistance qu'oppose le corps a

toute modification de I'état de
ROTATION.



8.3 Tenseur d’inertie par rapport au CM

- Moment cinétique par rapport
au centre de masse G

- En coordonnées cartésiennes, dans un repere orthonormé quelconque é;¢é,é; :

——\ 2 ~
= S ma [(GFL) b - @Ps (G| s = e
i o j
=(Ig)i;(élément d’une matrice 3x3)
- En notation matricielle: Log=1Is &
. I =tenseur d’inertie au
centre de masse G$ N Ig11 lg12 lg13
Ie =\ lg21 lg22 Ig23
. Matrice symétrique: Ig;; = Igj; Ig31 lgz2 Ig33

donc diagonalisable (I;; = 0 si i # j)

L= Y m. | (GF2)'a - (GP..3) P,

axe de
rotation A

solide

Note: comparaison entre dynamiques
de translation et de rotation:

@__'ext
{dt—F

dLg __ pAfext r 7~
-& =M avec Lg =Ig W

« le tenseur d’inertie est aux rotations ce
que la masse est aux translations »

avec p = Mvg




- Roue en rotation autour d’un axe A quelconque passant par G.
- Sion choisi le bon repere:

8.3 Ex. tenseur d’inertie d’une roue

1/2MR? 0 0
I; = 0 1/2MR? 0
0 0 MR?
ZG — ~G W=
1/2MR? 0 0 sin 8 cos ¢
0 1/2MR* 0 -w(sin@sin¢> =
0 0 MR?2 cos 6
1/2sinf cos¢
MRZa)(l/Z sianin¢>
cos 6

- Lg n’est pas parallele a w, mais dans le plan défini par w et I’axe de la roue

- Si la rotation se effectue autour d’un axe de symétrie (Iz14,I;2,0U I;33) alors
L; est parallele a w. Par ex.: é, || é;



8.3 Axes principaux d’inertie

Théoréme: _ _ _ _ _ o
Pour tout point € d’un solide, il est toujours possible de choisir un

repere orthonorme au point C tel que la matrice représentant le
tenseur d’inertie soit diagonale :

- se démontre en
algebre linéaire

) L 0 0
Ic=| 0 L, 0
0 0 Iy

- Définitions (au point C):

« Rotation autour d’un axe

- Repére d’inertie : repére dans lequel I est une matrice diagonale

- Axes principaux d’inertie : axes du repere d’inertie

- Moments d’inertie principaux : moments d’inertie par rapport aux axes principaux d’inertie, c-a-d
les ¢léments diagonaux de I-dans le repere d’inertie

. _ I1 0 0 w1 Ilwl
- Dans le repére d’inertie: Lo=1c-0= 0 I, O we | = | lws
0 0 I3 w3 Izws

L. n’est pas paralléle a w

EC = IAn&d & A est un axe principal d’inertie

fixe A passant par C: Si




8 ] 3 CaS par“ cu I |erS S| m p I es Axes et moments d’inertie principaux par

rapport au centre de masse G de quelques
solides homogenes de masse M

[

'3

/ - Paralléelépipede rectangle plein : « toupie asymétrique »:
G (plaque rectangulaire si a, b ou ¢ = 0) seulement trois axes
.- . rincipaux par G
c / > Il — %M(bQ 1 62) P P P
1/ b a IQZ%M(CQ_'_CI?)
Iy = L M(a® + v?)
+ 3
R / : — :
§> « toupie symetrigue »:
~. ez . Cylindre de révolution : tout axe A par G dans le
L \_{/<\ 3 (tige si R — 0, disque si L — 0) plan 12 est principal
<:_ 5 plein: I =T, =In=1MR?>+ LML2, I;=1MR?
=
1/ <Vide: I1=I2=IA=%MR2_|_%ML2) I; = MR?
43 sans masse sur les bases circulaires
« toupie sphérique »:
. Sphere: tout axe A par G
pleine: I = I = Iy = In = 2MR? est principal

vide: I1=I=1I3=1In=:MR?

Demo:https://auditoires-physique.epfl.ch/experiment/134 S
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8.3 Tenseur d’inertie par rapport a un point A du solide

- Par rapport a un point A appartenant au solide:

- —_— — 2 —_— — —_— ~
Ly =AG/\M17A+Zma |(4P,) @ - (4R, - &) AP;| = AG AMD, + I, - &
(04

Lij = z My [(m)z@j - (Apa)i(AP“)f]

I, = tenseur d’inertie au _ iy Lyyp Iags
point A d’élements I,;; I, =

_ tA Lnz1 lazz laos | # I
Matrice symetrique: I;; = I4j;

IA31 IA32 IA33

axe de
rotation A

- Si A est un point sur I’axe de rotation A:

i T — A T " "
La=Ly-epx=1-0w -epx= wly - epr épx= wlip

IA = zmadé
a

solide

10



8.3 Formule de Steiner

Relation entre le moment d’inertie par rapport a un axe donne par C (A. ) et le moment
d’inertie par rapport a un axe de méme direction mais passant par le centre de masse G (Ay):

LA:LC'éA:IACw

1¢r théoreme de Konig:

—

ZC =Z>G + CG /\mﬁG

LA=ZC-éA=ZG-éA+mC_G)/\(5/\C_G))'éA=IAGa)+ma)d2

= w(Iy, + md?)

In, = Ip, + md? Formule de Steiner

Théoreme de Steiner: généralisation de la formule de Steiner permettant de calculer le tenseur d’inertie au
point C quelconque d’un solide connaissant celui au centre de masse G 11



8.3 EX.: Roulement sans glissement sur plan incliné

Cylindre plein roulant sans glisser: v, = 0

Indiquer les forces externes agissantes sur le system

- Le centre de masse G est sur I’axe du cylindre: v, = wR
- Theoreme du centre de masse

mag = mgsina — Frpi.

mC_iG=FfriC+N+m§ — O:N—mgCOSC{

0=0
- Le systeme d’équations n’est pas suffisante pour résoudre le probleme
- Théoreme du moment cinétique '
Applique en G
2
- 1 . 1 A ==gSina
Le =Ig,0 = EmRza) = —EmRvGQ ¢ =39
1 .
) f 0=0 (0= ' an-c=§mgsma
d—G= &= 1 =1 N = mg cosa
t L_meaG = —RFprie M9 = Frric

12



8.3 Ex.: Roulement sans glissement sur plan incliné

Cylindre plein roulant sans glisser: v, = 0

Indiquer les forces externes agissantes sur le system

- Le centre de masse G est sur I’axe du cylindre: v; = wR
- Theoreme du centre de masse

mag = mgsina — Frpi.

mC_iG=FfriC+N+m§ — O:N—mgCOSC{

0=0
- Le systéme d’équations n’est pas suffisante pour résoudre le probleme
- Théoreme du moment cinétique '
Appliquéen A
3 2 0
ZA — IAJ Iy=1;,+ mR? = EmRZ (Formule de Steiner) ¢ = §g sina
1 .
( 0=0 ( 0=0 an-c=§mgsma
i, - 0=0 o—0  EEp
- =M = 3 =3 i N =mgcosa
dt \—EmRaG = —Rmg sina 2 dg = gsSiha g

13



8.3 Ex.: Meule tournante a vitesse constante

- Description et hypotheses :
- Meule: disque mince de masse m, rayon R, centre de masse G
- Axe de la meule CG: horizontal, sans masse, longueur d

- Roulement sans glissement sur le sol (friction tres petites pour simplifier), et point C fixe
sur un axe vertical

—

- W = —wé, rotation propre de la meule, Q= é, rotation autour de I’axe vertical

N.B.: pour chaque couple de points P, A d'un solide
. , . g = N d - = - — A
« Vecteur instantané de rotation total = w + Q Up = (74 + AP) = By + @roen AP

0 =04 =dc+(@+0)AGA
0 = e = g+ (@ + 9) AGC
¥
S @+ AGA= (@ +0)AGT

S GAGA=GAGC

= wR = Qd
e = (@ + Q) A CG = Qdég
- dé@ = A 2 A
Ac =QdE=QdQ/\eg = —dQ“¢é,

GIGC =2BAGEC=0 QIGA =>0AGA=0 14



8.3 EXx.: Meule tournante a vitesse constante

& =—wé,, O =0¢, wR = 0d,dg = —d0?é,
- Equations du mouvement :
20
di ) o ) -mQ<d =T,
d—=maG=T+N+mg = 0 =Ty
t 0=T,+N—mg
- Théoreme du moment cinétique
T est non connu = application en C d_C = MCext
t
1/2mR? 0 0 0 0 0
I = 0 1/4mR? 0 +m (0 d? 0 ) (Formule de Steiner; I11 = I11)
0 0 1/4mR? 0 0 d?
—w . 0 . d
o oy = 5=<0> Q=<o> CG=<O>
Le =1Ic- (‘U + Q) = () 0+ (Ug)33Q 0 Q 0

1L R? “+1 R? + md?*)Qé
5 MR wép (4m md~)Qé,

deé, dLe 1 de, 1 .
=0 = — = —-mR?w——=—-mR?*wQAré, = —-mR?’w Q&
It 0 dt Zm a)dt Zm w /\ep Zm w €p .




8.3 EXx.: Meule tournante a vitesse constante

& =—wé,, O =0¢, wR = 0d,dg = —d0?é,

Equations du mouvement :

17 -mQd =T,
d—pzm&G=T+ﬁ+m§ = 0="Ty
t 0=T,+N—mg

- Théoreme du moment cinétique

= L dL _,
T est non connu = application en C d_C = Mgt
t
dL 1
d_tc = — EmRza) Qéy

MEt = CG AmG+CAAN =dmgég+CGAN+GAAN =dmg ég — dN&g

——mR?w Qéy =dmg éqg — dNé 1
2 7 J <o ? —=mRdQ? = dmg — dN

2
s 1
N = mg + —mRQ?

2

wR = Qd

16



8.3 EXx.: Meule tournante a vitesse constante

B =—wé,, 0 =08, wR =0d,dg = —d02%é, ¥;=(d+Q)ACG

- Théoréme du moment cinetique

7 - dle -
T est non connu = application en C d_tC = ME*t
Lc=Ls + CGAmbg (19 théoréme de Konig)

ZC = ZG + C_G>/\ m’l})G = ZG + dép /\md‘QéQ = v

R 1/2mR? 0 0
= L; + md?Qé, . f2m ,
I, = 0 1/4mR 0

. . 5 . = 0 0 1/4mR*
Le=1I; (8+Q) =), 6+ Ug)3Q

1 1 - . 0 . d
= ——mR?wé, + —mR2Qé 5=< 0 ) Q=10 CG=<0>

2 ) z 0 O 0

T T 205 1 2,5 1 205 205 1 2,5 1 2 2\0 5
Lc =Lg +md-Qé,; = —EmR a)ep+ZmR Qé, + md“Qé, = —EmR wep+(ZmR + md“)Qe,

deé, dL 1 dé 1 . 1
-0 = d—f:——msz—p=——mR2w(5+Q)/\ép=—§mR2wQé9

2 dt 2

17



