
F. Blanc, automne 2023

• Roue de vélo en rotation au tour de son axe de symétrie:

- On veut changer la direction de l’axe de rotation; comment faut-il exercer le 

couple de force pour que l’axe tourne autour de Oz ? ou de Ox ?
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8.2 Ex.:Roue du velo

O O

𝐿𝐺 ∥ 𝜔

ො𝑦

ො𝑥

Ƹ𝑧

ො𝑦

ො𝑥

Ƹ𝑧

𝜔 = 𝜔ො𝑦



F. Blanc, automne 2023

• Roue de vélo en rotation au tour de son axe de symétrie:

- On veut changer la direction de l’axe de rotation; comment faut-il exercer  le 

couple de force pour que l’axe tourne autour de Ox ? ou de Oz ?
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8.2 Ex.: Roue du velo

Théorème du 
moment cinétique

M selon −ො𝑥 
𝑑𝐿

𝑑𝑡
selon −ො𝑥 M selon Ƹ𝑧 

𝑑𝐿

𝑑𝑡
selon Ƹ𝑧

a) forces F parallèles à z b) forces F parallèles à x

ො𝑦

ො𝑥

Ƹ𝑧

ො𝑦

ො𝑥

Ƹ𝑧

𝐿𝐺tourne dans le plan ො𝑥 ො𝑦 autour de O Ƹ𝑧 𝐿𝐺tourne dans le plan ො𝑦 Ƹ𝑧 autour de Oො𝑥



• Par rapport à un point 𝐴 appartenant au solide:

3

8.3 Moment cinétique d’un solide

= 0 si A = G (centre de masse)

ou si Ԧ𝑣𝐴 = 0 ,donc A = C fixe sur axe de rotation

Rappel:
si le solide est « continu », il faut remplacer 
la somme sur les points matériels 
par une intégrale sur le volume du solide

Rappel: pour chaque point P du solide

Ԧ𝑣𝑃 = Ԧ𝑣𝐴 + Ԧ𝑣𝑃
′ + 𝜔 ∧ 𝐴𝑃 avec Ԧ𝑣𝑃

′ = 0

Ԧ𝑎 ∧ 𝑏 ∧ Ԧ𝑐 =

Ԧ𝑎 ⋅ Ԧ𝑐 𝑏 − Ԧ𝑎 ⋅ 𝑏 Ԧ𝑐

൞

𝑚𝛼

෍

𝛼

Ԧ𝑟𝐺 =
1

𝑀
෍

𝛼

𝑚𝛼 Ԧ𝑟𝛼

𝐿𝐺 = ෍

𝛼

𝑚𝛼 𝐺𝑃𝛼
2
𝜔 − 𝐺𝑃𝛼 ∙ 𝜔 𝐺𝑃𝛼



• Moment cinétique par rapport à G (ou n’importe quel 
point 𝐶 fixe sur l’axe de rotation Δ) : 

• Faisons une projection sur l’axe de rotation Δ 

(𝜔 = 𝜔 Ƹ𝑒∆ parallèle à axe D):

• Moment d’inertie du solide 
par rapport à l’axe Δ:

• Remarques:

- 𝐼Δ dépend seulement de la distribution de masse par rapport à l’axe Δ

- En général, 𝐿𝐺 n’est pas parallèle à 𝜔

- Si Δ est un axe de symétrie du solide et 𝜔 = 𝜔 Ƹ𝑒∆, alors 𝐿𝐺 est parallèle à 𝜔

4

8.3 Moment d’inertie par rapport 
au CM (ou C sur axe de rotation)

𝐿Δ ne dépend de 𝐺 ou C !

solide

axe de 
rotation D

ma

Ƹ𝑒∆

𝜔 = 𝜔 Ƹ𝑒∆

𝐿Δ = 𝐿𝐺 ∙ Ƹ𝑒Δ = ෍

𝛼

𝑚𝛼 𝐺𝑃𝛼
2
𝜔 Ƹ𝑒∆ − 𝐺𝑃𝛼 ∙ 𝜔 Ƹ𝑒∆ 𝐺𝑃𝛼 ∙ Ƹ𝑒Δ=

𝜔෍

𝛼

𝑚𝛼 𝐺𝑃𝛼
2
− 𝐺𝑃𝛼 ∙ Ƹ𝑒∆

2
= 𝜔෍

𝛼

𝑚𝛼 𝑑𝛼
2

Demo: https://auditoires-physique.epfl.ch/experiment/60

𝐿𝐺 = ෍

𝛼

𝑚𝛼 𝐺𝑃𝛼
2
𝜔 − 𝐺𝑃𝛼 ∙ 𝜔 𝐺𝑃𝛼

G

https://auditoires-physique.epfl.ch/experiment/60
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8.3 Masse (d’inertie) et moment d’inertie

solide

axe de rotation
fixe D par G

ma

Ƹ𝑒∆
𝜔 = 𝜔 Ƹ𝑒∆

𝐿∆ = 𝐿𝐺 ∙ Ƹ𝑒∆ = 𝜔෍

𝛼

𝑚𝛼𝑑𝛼
2 = 𝐼∆𝜔

M

Ԧ𝑣

2eme loi de Newton

𝐹∆ = Ԧ𝐹 ∙ Ƹ𝑒∆ = 𝑀 Ԧ𝑎𝐺 ∙ Ƹ𝑒∆ = 𝑀
𝑑 Ԧ𝑣𝐺 ∙ Ƹ𝑒∆

𝑑𝑡

= 𝑀
𝑑𝑣𝐺∆
𝑑𝑡 𝑀∆ = 𝑀𝐺 ∙ Ƹ𝑒∆ =

𝑑𝐿𝐺
𝑑𝑡

∙ Ƹ𝑒∆ =
𝑑𝐿𝐺 ∙ Ƹ𝑒∆

𝑑𝑡
=
𝑑𝐿∆
𝑑𝑡

= 𝐼∆
𝑑𝜔

𝑑𝑡
La MASSE (inertielle ou d’inertie) 

mesure la résistance (inertie) 

qu'oppose le corps à toute accélération 

ou à toute modification de l'état de 

MOUVEMENT (RECTILIGNE)

La MOMENT D’INERTIE mesure 

la résistance qu'oppose le corps à 

toute modification de l'état de 

ROTATION. 

G

Ƹ𝑒∆

Ԧ𝐹



solide

axe de 
rotation D

ma

Ƹ𝑒∆

𝜔 = 𝜔 Ƹ𝑒∆

G

• Moment cinétique par rapport

au centre de masse 𝐺 :

• En coordonnées cartésiennes, dans un repère orthonormé quelconque Ƹ𝑒1 Ƹ𝑒2 Ƹ𝑒3 :

• En notation matricielle:

• ሚ𝐼𝐺 = tenseur d’inertie au
centre de masse 𝐺$

• Matrice symétrique: 𝐼𝐺𝑖𝑗 = 𝐼𝐺𝑗𝑖
donc diagonalisable (𝐼𝐺𝑗𝑖 = 0 𝑠𝑖 𝑖 ≠ 𝑗)
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8.3 Tenseur d’inertie par rapport au CM

Note: comparaison entre dynamiques
de translation et de rotation:

« le tenseur d’inertie est aux rotations ce 
que la masse est aux translations »

Ƹ𝑒1

Ƹ𝑒2

Ƹ𝑒3
𝜔 = 𝜔 Ƹ𝑒∆ = ෍

𝑖

𝜔𝑖 Ƹ𝑒𝑖

෩𝐼𝐺 =

𝐼𝐺11 𝐼𝐺12 𝐼𝐺13
𝐼𝐺21 𝐼𝐺22 𝐼𝐺23
𝐼𝐺31 𝐼𝐺32 𝐼𝐺33

𝐿𝐺 = ෍

𝑖

𝐿𝐺,𝑖 Ƹ𝑒𝑖



• Roue en rotation autour d’un axe ∆ quelconque passant par 𝐺. 

• Si on choisi le bon repère:

- 𝑳𝑮 n’est pas parallèle à 𝝎, mais dans le plan défini par 𝜔 et l’axe de la roue

- Si la rotation se effectue autour d’un axe de symétrie (𝐼𝐺11, 𝐼𝐺22ou 𝐼𝐺33) alors 

𝑳𝑮 est parallèle à 𝝎. Par ex.: Ƹ𝑒∆ ∥ Ƹ𝑒3
7

8.3 Ex. tenseur d’inertie d’une roue

G

𝐿𝐺 = ሚ𝐼𝐺 · 𝜔 =

1/2𝑀𝑅2 0 0

0 1/2𝑀𝑅2 0

0 0 𝑀𝑅2

· 𝜔
sin 𝜃 cos 
sin 𝜃 sin 
cos 𝜃

=

𝑀𝑅2𝜔
1/2 sin 𝜃 cos 
1/2 sin 𝜃 sin 

cos 𝜃

𝜔3

Ƹ𝑒1

Ƹ𝑒2

Ƹ𝑒3

𝜔1
𝜔2

𝜃

Ƹ𝑒∆

ሚ𝐼𝐺 =
1/2𝑀𝑅2 0 0

0 1/2𝑀𝑅2 0

0 0 𝑀𝑅2



• Théorème:

- se démontre en 

algèbre linéaire

• Définitions (au point 𝐶):

- Repère d’inertie : repère dans lequel ሚ𝐼𝑐est une matrice diagonale

- Axes principaux d’inertie : axes du repère d’inertie

- Moments d’inertie principaux : moments d’inertie par rapport aux axes principaux d’inertie, c-à-d 

les éléments diagonaux de ሚ𝐼𝐶dans le repère d’inertie

• Dans le repère d’inertie:

• Rotation autour d’un axe

fixe Δ passant par 𝐶: Si
8

8.3 Axes principaux d’inertie 

Pour tout point 𝐶 d’un solide, il est toujours possible de choisir un 

repère orthonormé au point 𝐶 tel que la matrice représentant le 

tenseur d’inertie soit diagonale :

𝐿𝐶 n’est pas parallèle à 𝜔



• Parallélépipède rectangle plein :
(plaque rectangulaire si 𝑎, 𝑏 ou 𝑐 → 0)

• Cylindre de révolution :
(tige si 𝑅 → 0, disque si 𝐿 → 0)

• Sphère:

9

8.3 Cas particuliers simples Axes et moments d’inertie principaux par 
rapport au centre de masse G de quelques 
solides homogènes de masse M

sans masse sur les bases circulaires

« toupie asymétrique »: 
seulement trois axes 

principaux par G

« toupie symétrique »:
tout axe Δ par G dans le 

plan 12 est principal

« toupie sphérique »:
tout axe Δ par G

est principal

1 b

2

3

G

a
c

3

1

2L

R

D

G

G

R

3

2

1

D

Demo:https://auditoires-physique.epfl.ch/experiment/134

https://auditoires-physique.epfl.ch/experiment/134


• Par rapport à un point 𝐴 appartenant au solide:

• Si A est un point sur l’axe de rotation D:

10

8.3 Tenseur d’inertie par rapport à un point A du solide

𝐿𝐴 = 𝐴𝐺 ∧𝑀 Ԧ𝑣𝐴 +෍

𝛼

𝑚𝛼 𝐴𝑃𝛼
2
𝜔 − 𝐴𝑃𝛼 ∙ 𝜔 𝐴𝑃𝛼 = 𝐴𝐺 ∧𝑀 Ԧ𝑣𝐴 + ሚ𝐼𝐴 ∙ 𝜔

ሚ𝐼𝐴𝑖𝑗 = ෍

𝛼

𝑚𝛼 𝐴𝑃𝛼
2
𝛿𝑖𝑗 − 𝐴𝑃𝛼 𝑖 𝐴𝑃𝛼 𝑗

ሚ𝐼𝐴 = tenseur d’inertie au
point A d’éléments ሚ𝐼𝐴𝑖𝑗

Matrice symétrique: 𝐼𝐴𝑖𝑗 = 𝐼𝐴𝑗𝑖
ሚ𝐼𝐴 =

𝐼𝐴11 𝐼𝐴12 𝐼𝐴13
𝐼𝐴21 𝐼𝐴22 𝐼𝐴23
𝐼𝐴31 𝐼𝐴32 𝐼𝐴33

≠ ሚ𝐼𝐺

𝐿Δ = 𝐿𝐴 ∙ Ƹ𝑒Δ = ሚ𝐼𝐴 ∙ 𝜔 ∙ Ƹ𝑒Δ= 𝜔ሚ𝐼𝐴 ∙ Ƹ𝑒Δ∙ Ƹ𝑒Δ= 𝜔𝐼Δ

𝐼Δ = ෍

𝛼

𝑚𝛼𝑑𝛼
2

solide

axe de 
rotation D

ma

Ƹ𝑒∆

𝜔 = 𝜔 Ƹ𝑒∆

A



Relation entre le moment d’inertie par rapport à un axe donné par C (DC ) et le moment 

d’inertie par rapport à un axe de même direction mais passant par le centre de masse G (DG):

11

8.3 Formule de Steiner

G

DG

DCd

solide

1 2

3 C

𝐿𝐶 = 𝐿𝐺 + 𝐶𝐺 𝑚Ԧ𝑣𝐺

𝐿Δ = 𝐿𝐶 · Ƹ𝑒∆ = 𝐿𝐺 · Ƹ𝑒∆ +𝑚𝐶𝐺  𝜔  𝐶𝐺 · Ƹ𝑒∆ = 𝐼∆𝐺𝜔 +𝑚𝜔𝑑2

= 𝜔 𝐼∆𝐺 +𝑚𝑑2

1er théorème de König:

𝐼∆𝐶 = 𝐼∆𝐺 +𝑚𝑑2

𝑃𝛼𝑟𝛼

Ƹ𝑒∆
𝐿Δ = 𝐿𝐶 · Ƹ𝑒∆ = 𝐼∆𝐶 𝜔

Formule de Steiner

Théorème de Steiner: généralisation de la formule de Steiner permettant de calculer le tenseur d’inertie au 

point 𝐶 quelconque d’un solide connaissant celui au centre de masse 𝐺

𝜔 = 𝜔 Ƹ𝑒∆ 𝐶𝐺  𝜔  𝐶𝐺
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8.3 Ex.: Roulement sans glissement sur plan incliné

a

A

R

Cylindre plein roulant sans glisser: 𝑣𝐴 = 0

 ቐ
𝑚𝑎𝐺 = 𝑚𝑔 sin 𝛼 − 𝐹𝑓𝑟𝑖𝑐

0 = 𝑁 −𝑚𝑔 cos 𝛼
0 = 0

𝑚 Ԧ𝑎𝐺 = Ԧ𝐹𝑓𝑟𝑖𝑐 + 𝑁 +𝑚 Ԧ𝑔

G

- Le centre de masse G est sur l’axe du cylindre: 𝑣𝐺 = 𝜔𝑅
- Théorème du centre de masse

𝑚 Ԧ𝑔

Ԧ𝐹𝑓𝑟𝑖𝑐
Indiquer les forces externes agissantes sur le system

ො𝑥

ො𝑦

𝜔 = −𝜔 Ƹ𝑧

Ƹ𝑧

𝑑𝐿𝐺
𝑑𝑡

= 𝑀𝐺
𝑒𝑥𝑡 

0 = 0
0 = 0

−
1

2
𝑚𝑅𝑎𝐺 = −𝑅𝐹𝑓𝑟𝑖𝑐

- Le système d’équations n’est pas suffisante pour résoudre le problème

- Théorème du moment cinétique

Appliqué en G

𝐿𝐺 = 𝐼𝐺𝑧𝜔 =
1

2
𝑚𝑅2𝜔 = −

1

2
𝑚𝑅𝑣𝐺 Ƹ𝑧

𝑎𝐺 =
2

3
𝑔 sin𝛼

𝑁 = 𝑚𝑔 cos𝛼

𝐹𝑓𝑟𝑖𝑐 =
1

3
𝑚𝑔 sin𝛼



0 = 0
0 = 0

1

2
𝑚𝑎𝐺 = 𝐹𝑓𝑟𝑖𝑐
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8.3 Ex.: Roulement sans glissement sur plan incliné

a

A

R

Cylindre plein roulant sans glisser: 𝑣𝐴 = 0

 ቐ
𝑚𝑎𝐺 = 𝑚𝑔 sin 𝛼 − 𝐹𝑓𝑟𝑖𝑐

0 = 𝑁 −𝑚𝑔 cos 𝛼
0 = 0

𝑚 Ԧ𝑎𝐺 = Ԧ𝐹𝑓𝑟𝑖𝑐 + 𝑁 +𝑚 Ԧ𝑔

G

- Le centre de masse G est sur l’axe du cylindre: 𝑣𝐺 = 𝜔𝑅
- Théorème du centre de masse

𝑚 Ԧ𝑔

Ԧ𝐹𝑓𝑟𝑖𝑐
Indiquer les forces externes agissantes sur le system

- Le système d’équations n’est pas suffisante pour résoudre le problème

- Théorème du moment cinétique

Appliqué en A

ො𝑥

ො𝑦

𝜔 = −𝜔 Ƹ𝑧

𝐿𝐴 = 𝐼𝐴𝜔 𝐼𝐴 = 𝐼𝐺𝑧 +𝑚𝑅2 =
3

2
𝑚𝑅2

𝑑𝐿𝐴
𝑑𝑡

= 𝑀𝐴
𝑒𝑥𝑡 

0 = 0
0 = 0

−
3

2
𝑚𝑅𝑎𝐺 = −𝑅𝑚𝑔 sin 𝛼

Ƹ𝑧



0 = 0
0 = 0

3

2
𝑎𝐺 = 𝑔 sin 𝛼

𝑎𝐺 =
2

3
𝑔 sin𝛼

𝑁 = 𝑚𝑔 cos𝛼

𝐹𝑓𝑟𝑖𝑐 =
1

3
𝑚𝑔 sin𝛼

(Formule de Steiner)



• Description et hypothèses :

- Meule: disque mince de masse 𝑚, rayon 𝑅, centre de masse 𝐺
- Axe de la meule 𝐶𝐺: horizontal, sans masse, longueur 𝑑
- Roulement sans glissement sur le sol (friction très petites pour simplifier), et point 𝐶 fixe 

sur un axe vertical

- 𝜔 = −𝜔 Ƹ𝑒𝜌 rotation propre de la meule, Ω = Ω Ƹ𝑒𝑧 rotation autour de l’axe vertical  

• Vecteur instantané de rotation total = 𝜔 +
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8.3 Ex.: Meule tournante à vitesse constante

N.B.: pour chaque couple de points 𝑃, 𝐴 d′un solide

Ԧ𝑣𝑃 =
𝑑

𝑑𝑡
Ԧ𝑟𝐴 + 𝐴𝑃 = Ԧ𝑣𝐴 +𝜔𝑡𝑜𝑡 𝐴𝑃

d

𝑚 Ԧ𝑔

Ƹ𝑒𝜌

Ƹ𝑒𝜃
Ƹ𝑒𝑧

C

G
R

A

Ω ∥ 𝐺𝐴 ⇒ Ω ∧ 𝐺𝐴 = 0𝜔 ∥ 𝐺𝐶 ⇒ 𝜔 ∧ 𝐺𝐶 = 0

Ԧ𝑣𝐺 = 𝜔 + Ω ∧ 𝐶𝐺 = Ω𝑑 Ƹ𝑒𝜃

Ԧ𝑎𝐺 = Ω𝑑
𝑑 Ƹ𝑒𝜃
𝑑𝑡

= Ω𝑑 Ω ∧ Ƹ𝑒𝜃 = −𝑑Ω2 Ƹ𝑒𝜌
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8.3 Ex.: Meule tournante à vitesse constante

𝜔 = −𝜔 Ƹ𝑒𝜌, Ω = Ω Ƹ𝑒𝑧, 𝜔𝑅 = Ω𝑑, Ԧ𝑎𝐺 = −𝑑Ω2 Ƹ𝑒𝜌

 ൞

−𝑚2𝑑 = 𝑇𝜌
0 = 𝑇𝜃

0 = 𝑇𝑧 + 𝑁 −𝑚𝑔

𝑑 Ԧ𝑝

𝑑𝑡
= 𝑚 Ԧ𝑎𝐺 = 𝑇 + 𝑁 +𝑚 Ԧ𝑔

• Equations du mouvement :

𝑑𝐿𝐶
𝑑𝑡

= 𝑀𝐶
𝑒𝑥𝑡

- Théorème du moment cinétique

𝑇 est non connu ⇒ application en C

ሚ𝐼𝐶 =

1/2𝑚𝑅2 0 0

0 1/4𝑚𝑅2 0

0 0 1/4𝑚𝑅2

+𝑚
0 0 0
0 𝑑2 0
0 0 𝑑2

(Formule de Steiner; 𝐼𝐶11 = 𝐼𝐺11)

𝐿𝐶 = ሚ𝐼𝐶 · 𝜔 + = ሚ𝐼𝐶 11𝜔 + ሚ𝐼𝐶 33

= −
1

2
𝑚𝑅2𝜔 Ƹ𝑒𝜌 + (

1

4
𝑚𝑅2 +𝑚𝑑2)Ω Ƹ𝑒𝑧

𝐶𝐺 =
𝑑
0
0

𝜔 =
−𝜔
0
0

 =
0
0


𝑑𝐿𝐶
𝑑𝑡

= −
1

2
𝑚𝑅2𝜔

𝑑 Ƹ𝑒𝜌

𝑑𝑡
= −

1

2
𝑚𝑅2𝜔   Ƹ𝑒𝜌 = −

1

2
𝑚𝑅2𝜔  Ƹ𝑒𝜃

𝑑 Ƹ𝑒𝑧
𝑑𝑡

= 0

d

𝑚 Ԧ𝑔

Ƹ𝑒𝜌

Ƹ𝑒𝜃
Ƹ𝑒𝑧

C

G
R

A
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8.3 Ex.: Meule tournante à vitesse constante

 ൞

−𝑚2𝑑 = 𝑇𝜌
0 = 𝑇𝜃

0 = 𝑇𝑧 + 𝑁 −𝑚𝑔

𝑑 Ԧ𝑝

𝑑𝑡
= 𝑚 Ԧ𝑎𝐺 = 𝑇 + 𝑁 +𝑚 Ԧ𝑔

• Equations du mouvement :

𝑑𝐿𝐶
𝑑𝑡

= 𝑀𝐶
𝑒𝑥𝑡

- Théorème du moment cinétique

𝑇 est non connu ⇒ application en C

𝑑𝐿𝐶
𝑑𝑡

= −
1

2
𝑚𝑅2𝜔  Ƹ𝑒𝜃

𝑀𝐶
𝑒𝑥𝑡 = 𝐶𝐺 𝑚 Ԧ𝑔 + 𝐶𝐴  𝑁 = 𝑑 𝑚𝑔 Ƹ𝑒𝜃 + 𝐶𝐺  𝑁 + 𝐺𝐴  𝑁 = 𝑑 𝑚𝑔 Ƹ𝑒𝜃 − 𝑑𝑁 Ƹ𝑒𝜃

−
1

2
𝑚𝑅2𝜔  Ƹ𝑒𝜃 = 𝑑 𝑚𝑔 Ƹ𝑒𝜃 − 𝑑𝑁 Ƹ𝑒𝜃

𝜔𝑅 = Ω𝑑
𝑁 = 𝑚𝑔 +

1

2
𝑚𝑅2

−
1

2
𝑚𝑅𝑑2 = 𝑑𝑚𝑔 − 𝑑𝑁

d

𝑚 Ԧ𝑔

Ƹ𝑒𝜌

Ƹ𝑒𝜃
Ƹ𝑒𝑧

C

G
R

A

𝜔 = −𝜔 Ƹ𝑒𝜌, Ω = Ω Ƹ𝑒𝑧, 𝜔𝑅 = Ω𝑑, Ԧ𝑎𝐺 = −𝑑Ω2 Ƹ𝑒𝜌
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8.3 Ex.: Meule tournante à vitesse constante

𝑑𝐿𝐶
𝑑𝑡

= 𝑀𝐶
𝑒𝑥𝑡

- Théorème du moment cinétique

𝑇 est non connu ⇒ application en C

ሚ𝐼𝐺 =

1/2𝑚𝑅2 0 0

0 1/4𝑚𝑅2 0

0 0 1/4𝑚𝑅2

(1er théorème de König)

𝐶𝐺 =
𝑑
0
0

𝜔 =
−𝜔
0
0

 =
0
0


𝐿𝐶 = 𝐿𝐺 + 𝐶𝐺𝑚 Ԧ𝑣𝐺

𝐿𝐺 = ሚ𝐼𝐺 · 𝜔 + = ሚ𝐼𝐺 11𝜔 + ሚ𝐼𝐺 33

= −
1

2
𝑚𝑅2𝜔 Ƹ𝑒𝜌 +

1

4
𝑚𝑅2Ω Ƹ𝑒𝑧

𝐿𝐶 = 𝐿𝐺 + 𝐶𝐺𝑚 Ԧ𝑣𝐺 = 𝐿𝐺 + 𝑑 Ƹ𝑒𝜌 𝑚𝑑Ω Ƹ𝑒𝜃 =

= 𝐿𝐺 +𝑚𝑑2Ω Ƹ𝑒𝑍

𝐿𝐶 = 𝐿𝐺 +𝑚𝑑2Ω Ƹ𝑒𝑍 = −
1

2
𝑚𝑅2𝜔 Ƹ𝑒𝜌 +

1

4
𝑚𝑅2Ω Ƹ𝑒𝑧 +𝑚𝑑2Ω Ƹ𝑒𝑍 = −

1

2
𝑚𝑅2𝜔 Ƹ𝑒𝜌 + (

1

4
𝑚𝑅2 +𝑚𝑑2)Ω Ƹ𝑒𝑧

Ԧ𝑣𝐺 = 𝜔 + Ω  𝐶𝐺

d

𝑚 Ԧ𝑔

Ƹ𝑒𝜌

Ƹ𝑒𝜃
Ƹ𝑒𝑧

C

G
R

A

𝜔 = −𝜔 Ƹ𝑒𝜌, Ω = Ω Ƹ𝑒𝑧, 𝜔𝑅 = Ω𝑑, Ԧ𝑎𝐺 = −𝑑Ω2 Ƹ𝑒𝜌

𝑑 Ƹ𝑒𝑧
𝑑𝑡

= 0 𝑑𝐿𝐶
𝑑𝑡

= −
1

2
𝑚𝑅2𝜔

𝑑 Ƹ𝑒𝜌

𝑑𝑡
= −

1

2
𝑚𝑅2𝜔 𝜔 +  Ƹ𝑒𝜌 = −

1

2
𝑚𝑅2𝜔  Ƹ𝑒𝜃


